A domain decomposition algorithm for improved staggered
fermions on GPUs

Carleton DeTar, Justin Foley, Robert Sugar

June 15, 2013

Abstract

Lattice QCD is a numerical approach to the theory of the strong interaction.
Calculations in this field answer fundamental questions about the nature of matter,
provide insight into the evolution of the early universe, and play a crucial role in
the search for new theories beyond the Standard Model of elementary particle
physics. Massive computational resources are needed to achieve these goals, and
Lattice QCD is a major HPC application. In recent years, lattice calculations
have benefited from the use of GPU accelerators. However, in order to fully utilize
the vast computational resources available on leadership-class platforms such as
Blue Waters, new algorithms must be developed to extend strong scaling in lattice
calculations to many hundreds or even thousands of GPUs. In particular, the
development of efficient many-GPU algorithms for solving the large-scale linear
systems that arise in lattice calculations is essential. In this report, we describe the
implementation of domain-decomposition-based linear solvers for GPU calculations
using the HISQ lattice formalism. Performance results obtained in multi-GPU
calculations on Blue Waters are discussed. The algorithms described here also
serve as a starting point for the development of more sophisticated methods which
will be needed to effectively utilize future HPC technologies.

1 Introduction

Lattice QCD is a numerical treatment of Quantum Chromodynamics (QCD), the quan-
tum field theory that describes the strong nuclear interaction. QCD is a theory of fun-
damental matter particles called quarks and particles called gluons that mediate the
strong interaction. In this approach, space and time are approximated by a discrete
four-dimensional grid. Quarks reside on the lattice sites and gluons are associated with
links connecting adjacent lattice sites. Ultimately, physical quantities are computed by
evaluating high-dimensional integrals numerically. Current state-of-the art calculations
may involve integrals over more than a billion variables, which are usually evaluated
using Markov-Chain Monte Carlo methods. Since its inception almost 40 years ago,
Lattice QCD has developed into a major HPC application, and Lattice QCD codes are
run at leadership-class facilities across the United States and abroad.

This project relates to the use of GPU accelerators to solve the massive linear
systems that arise in lattice calculations. The solution of linear systems dominates
Lattice QCD calculations, and iterative linear solvers were the first lattice codes ported
to GPUs [1]. Unfortunately, large-scale multi-GPU calculations using conventional
solver algorithms are communication bound and they exhibit poor scaling on large
numbers of GPUs. The aim of this project is to implement novel preconditioners
designed to reduce inter-processor communication in the solver, which will ultimately
help to extend strong scaling on platforms like Blue Waters to a thousand GPUs and
beyond.

The algorithms described here utilize the Highly-Improved Staggered Quark, or
HISQ, fermion discretization used by the MILC collaboration. These algorithms have
been integrated into QUDA [2, 3], a well-known open-source library for performing
lattice calculations on NVIDIA GPUs.

2 Linear systems in lattice calculations

In lattice calculations, the linear system

Ap=n (1)

is solved to obtain ¢. In this equation, A is a large, sparse, square matrix, and vectors
¢, n are commonly referred to as quark fields. In the HISQ formalism, quark fields
have three complex components per lattice site and A = QTQ, where Q is the HISQ
matrix. Hence, A is Hermitian positive-definite. The HISQ matrix is given by

4
1
Qo = 52 (Xul)dstss = X[()0,

pn=1
+ EmW,LL(S)53+3ﬂ,s/ - emW,I (S,) 5573,&,3’) + mds,s/
(2)

In this expression, s, s’ label lattice sites. p runs over space-time directions, and fi is a
unit vector (one lattice spacing in length) in the p direction. X, W, are complex 3x3
matrices, and m is the quark mass, a positive real number. ¢,, is a real-valued mass-
dependent coefficient, which takes a small numerical value in practice. The matrices
X,, appearing in the one-hop terms are known as fat link variables, while the matrices
W,, that connect sites three lattice-spacing apart are called long link variables.

Usually, iterative Krylov methods are employed to solve Eq. 1. Given a starting
guess for the solution, ¢g, and the corresponding residual vector pg = A¢g — 7, a
sequence of approximate solutions ¢1, ¢, ..., ¢, are constructed in the Krylov subspaces
K1, ...Kp, where), denotes the space spanned by {po, Apg, ..., A"po}.

In HISQ calculations, the Conjugate Gradient (CG) algorithm [4], which requires a
Hermitian positive-definite matrix, is the solver of choice. The rate of convergence of
the Krylov solver is governed by k(A), the condition number of the matrix A, which

is the ratio of the absolute value of the largest eigenvalue of A to the absolute value of
the smallest. A low condition number corresponds to a well-conditioned system. Pre-
conditioning works by replacing the original linear system with an equivalent problem
involving a matrix with a lower condition number. For example,

ACt¢=C'y, A=CtACTM, (3)

where C' is chosen so that M = C'C approximates A in some sense. In order for
preconditioning to be useful in practice, the calculation of the matrix-vector product
M~'p must be relatively inexpensive. Clearly, A is Hermitian positive-definite, and
CG can be applied to Eq. 3. In practice, the preconditioned CG algorithm solves Eq. 3
using a single evaluation of M~'p per iteration, and C~! and CT~! do not appear
explicitly [5].

3 Accelerating Lattice QCD on GPUs

QUDA is an open-source library for performing multi-GPU calculations in Lattice
QCD. The library is written in C+4 and MPI and targets NVIDIA’s CUDA architec-
ture. QUDA includes linear solvers for multiple lattice discretization schemes, including
CG solvers for the HISQ discretization.

Single-GPU benchmarks obtained using QUDA on K20X processors give perfor-
mance figures of approximately 160 Gflops for linear solves using single-precision arith-
metic. Performance in double-precision solves is about 80 Gflops. QUDA also includes
mixed-precision solvers that implement the reliable update procedure proposed by Slei-
jpen and Van der Vorst [6]. In tests, QUDA’s mixed-precision solvers produce results
with double-precision accuracy, while almost matching single-precision performance.

The linear-solver performance observed in single-GPU benchmarks does not scale
to large numbers of GPUs. In calculations involving multiple processors, the lattice is
divided into regular subdomains and each processor operates on a single subdomain.
The fat- and long-link matrices are copied to device memory only once, at the be-
ginning of the solve. However, each solver iteration involves the transfer of quark-field
data between processors acting on neighboring lattice subdomains. In practice, calcula-
tions using conventional solvers on a few hundred GPUs are completely communication
bound

3.1 Non-overlapping additive Schwarz preconditioning

To improve multi-GPU solver performance, one can utilize preconditioning schemes
that involve little or no inter-processor communication. Specifically, one can apply
domain-decomposition, or Schwarz [7], preconditioning techniques. In the simplest
approach - non-overlapping additive Schwarz preconditioning, the preconditioning op-
erator M is defining by letting M ~!p be the result of applying A~! to the quark field
p ignoring inter-processor communication. More formally,

Mo =3 RIA Rip, (4)

7

Time for linear solves at the light-quark mass on a 96°x192 lattice

5000 \ \ I— \ \ \
4500 (= 3—£1 Double-precision standard CG on the XE nodes |—|
o (G—© Mixed-precision standard CG - minimum time | -
4000 &—© Mixed-precision DDCG - minimum time —
B Mixed-precision standard CG - mean time b
500 V—/ Mixed-precision DDCG - mean time]

Time per solve (secs)
[\®) [\®) W (O8]
(9]
S
S
I

64 128 192 256 320 384 448 512
Number of sockets/GPUs

Figure 1: Times for linear solves at the light-quark mass on a 963x192 lattice on
Blue Waters. ‘DDCG’ corresponds to the CG algorithm with non-overlapping additive
Schwarz preconditioning. The black squares indicate data obtained using the MILC
collaboration’s software suite on the XE nodes. All other points were obtained by
running QUDA on the XK7 nodes.

where the subscript ¢ labels disjoint subdomains. The matrix R; projects onto domain
i, that is, the quark-field component R;p(s) is equal to p(s) if the lattice site s lies in
subdomain ¢, and is zero otherwise. Then, A; = RZTARi. Clearly, M defined in this
way is Hermitian positive-definite and can therefore be used in preconditioned CG.

Since M ! is a preconditioner, it need not be evaluated exactly. Hence, we use
CUDA'’s half-precision data types in the preconditioner. Moreover, since (zero-field)
Dirichlet boundary conditions are imposed on each subdomain, the matrices A; are
expected to be well conditioned and a few solver iterations should suffice to obtain
M~1p to areasonable accuracy. We can also use the minimal residual (MR) or steepest-
descent algorithms in this step. Although much less robust than CG, these solvers
involve fewer operations per iteration. Finally, the coefficient €, multiplying the long-
link terms in the HISQ matrix is numerically very small. Omitting the long-link terms
in the preconditioner reduces the number of arithmetic operations and global memory
accesses needed to evaluate M p by almost 50% without appreciably affecting the quality
of the approximation to Ap.

Tests of the algorithm were performed on a 963x192 lattice on the XK7 nodes
on Blue Waters. The number of processors used ranged between 96 and 2304 GPUs.
Two quark mass values were examined, corresponding to the light and strange quark

. 3 .
Linear solves at the strange-quark mass on a 96 x192 lattice
I i I i I i I i I i I i I i I i I

—
\S}

31 Non-overlapped domain-decomposed CG
G—© Unpreconditioned CG I

._.
—_
T

—_
]
T
|

\O
I
|

Time per solve (sec)

5 | I | I | I | I | I | I | I | I |

256 512 768 1024 1280 1536 1792 2048 2304
Number of GPUs

Figure 2: Solve times at the strange-quark mass on the XK7 nodes. On large numbers
of GPUs, the use of non-overlapping additive Schwarz preconditioning reduces solve
times by approximately 30%.

masses on this lattice. The outer solver iterations, used mixed single-double precision
arithmetic, and the target relative residual in the solver (||p||/||n]|) was set to 1078.

Between 5 and 10 MR iterations in the preconditioner gave optimal results, and
Schwarz preconditioning was found to reduce the number of CG iterations by 40 to
50% for both quark masses and for different numbers of GPUs. Below a thousand
GPUs, the reduction in inter-processor communication was offset by the additional
cost of the preconditioning step, however, and additive Schwarz does not yet appear
to offer any significant improvement over standard CG in this regime (Fig. 1). Fig. 1
also shows that the times to solution for linear solves at the light-quark mass are much
lower on the GPU-enabled XK7 nodes than on the XE nodes for a given number of
sockets. Fig. 2 shows GPU solver times for larger numbers of GPUs. In this case,
domain decomposition does reduce average solve times by about 30%.

3.2 Restricted additive Schwarz preconditioning

We can mitigate boundary effects by allowing the lattice subdomains in the precon-
ditioning step to overlap to some degree. This is represented graphically in Fig. 3.
In this figure, different colors distinguish sites in disjoint lattice regions. Each lattice
subdomain consists of an interior region, as well as boundary regions that coincide
with sites in the interior regions of neighboring subdomains. At the beginning of the

Figure 3: Overlapping domain decomposition of a 2D lattice. Each processor operates
on a subdomain that consists of an interior region and boundary regions which coincide
with sites in the interior regions of neighboring subdomains.

preconditioning step, quark-field data are fetched from neighboring subdomains and
copied into the boundary regions. Let R; be the matrix that projects onto extended
domain i. Then, A L R;p is evaluated on each subdomain, where 4; = R AR;. Finally
the result is restricted to the interior region of each domain. Therefore,

M= Y RA R)

where R; is the projection matrix for non-overlapping decomposition, introduced ear-
lier. This variant of Schwarz preconditioning is commonly referred to as Restricted
Additive Schwarz [8].

Crucially, however, this definition of A/ ~! is not Hermitian and cannot therefore be
used in a Conjugate Gradient solver. Alternative Krylov solvers that can handle non-
Hermitian matrices include the BiCGstab and GMRes algorithms, and the Generalized
Conjugate Residual, or GCR, algorithm, which has been used with considerable success
in studies involving Wilson and Clover fermions [3, 9]. QUDA already featured a
GCR solver with support for non-overlapping additive Schwarz preconditioning, and we
modified this solver to support overlapping domains. Incorporating overlapping domain
decomposition into QUDA involved significant reengineering of a number of low-level
routines and data structures, which were not written with this type of application in
mind.

QUDA now supports the Swiss-flag type decomposition illustrated in Fig. 3. Cur-
rently, the widths of the overlap regions at each end of a subdomain are constrained to
be an even number number of lattice sites. However, domains need not overlap in all
partitioned directions.

The vectors generated at each iteration of GCR are needed to extend the Krylov
subspace in future iterations. Therefore, the size of the Krylov subspace that can be
generated is restricted by the number of quark fields that can be held in memory, and
the GCR algorithm has to be restarted periodically. In our tests, choosing the maximum

Krylov dimension, N, to be 20 gave reasonable convergence. On the 963x192 lattice
and inverting at the strange-quark mass, the unpreconditioned GCR reached the desired
tolerance in approximately 1800 iterations. However, on 256 GPUs it was possible to
set N = 60 and the total number of iterations dropped below 800, with a similar
reduction in time to solution.

In our tests, the lattice was partitioned in the y, z, and ¢ directions, and we consid-
ered overlap widths of zero, two, and four lattice sites. In general, the use of overlaps
in the preconditioner does result in a significant decrease in the number of outer GCR
iterations. For example, using ten iterations of the MR algorithm and overlaps of width
four in the z and t directions in the preconditioner reduced the number of GCR itera-
tions from 800 to 210. However, this corresponded to a decrease in the time to solution
of only about 10%. Similar relative improvement was observed at the light-quark mass.

In none of the tests, did the GCR algorithm with overlapping domains match the
performance of of the CG solver using non-overlapped additive Schwarz precondition-
ing. It may be the case, however, that the overlapped additive Schwarz preconditioner
fares better with an alternative outer solver, such as BiCGstab, and we will explore
this possibility in the future.

4 Summary, on-going work, and future directions

We have performed a first study of domain-decomposition techniques in the linear
solvers used in Lattice QCD calculations using the HISQ formalism. The ultimate aim
of this program is to extend strong scaling on the XK7 nodes on Blue Waters up to
and beyond a thousand GPUs.

We have implemented additive Schwarz preconditioning for the HISQ operator in
the QUDA GPU library, and our code supports variable domain overlaps. The use of
non-overlapping domains results in a Hermitian positive-definite preconditioner which
can be incorporated into a CG solver. Allowing domains to overlap mitigates boundary
effects but results in a preconditioning operator that is not Hermitian.

Tests performed on Blue Waters on a 962 x192 lattice and using variable numbers of
GPUs indicate that preconditioning reduces the number of CG iterations and, hence,
the amount of inter-processor communication by 40 to 50%. Currently, this translates
into a 30% reduction in solve times on large numbers of GPUs (> 1024). The use of
overlapping domains in the preconditioning step in the GCR algorithm further reduces
the number of outer solver iterations. However, this improvement is offset by the
additional cost per iteration of GCR, which trails CG in performance.

This work connects closely to a number of current and future algorithm projects.
One project relates to the way the long-link matrices appearing in the HISQ operator
are stored in GPU global memory. Currently, each long link is stored as 18 floating-
point numbers. However, the long-link matrices are unitary, and due to this additional
constraint, they can be stored in a compressed format using 13 real numbers without
loss of numerical precision. This compression will reduce memory-bandwidth pressure,
and previous results from similar compression algorithms indicate a potential perfor-

mance gain of up to 20% in the individual HISQ matrix kernels. The knock-on effect
of this gain in kernel performance will be an increase in the proportion of overall time
spent communicating data, which, in turn, may result in more significant performance
gains from domain-decomposition methods.

In addition, the results presented here were obtained using CUDA’s half-precision
data types only in the preconditioning step. The outer solver iterations use mostly
single-precision floating-point arithmetic with period reliable updates to obtain a final
result that is double-precision accurate. So far, mixed-precision solvers that use half
precision, instead of single precision, in the outer iteration have proven to be unstable.
However, there are indications that a stable half-double precision solver could be ob-
tained from a modified outer solver iteration combined with an efficient preconditioner.
The use of half-precision arithmetic in the outer-solver iterations would result in a very
significant increase in overall performance.

Furthermore, it may be that the optimal preconditioning scheme allows some degree
of interprocessor communication. For example, the preconditioner might incorporate
periodic exchange of the boundary data in certain directions. If we exclude the long-
link terms in the HISQ matrix in the preconditioning step, the quark data that needs to
be communicated corresponds to a boundary region that is only one lattice spacing in
width. The software developed in this project can easily be modified to allow varying
levels of inter-processor communication.

Finally, we note that the preconditioned solvers described in this report can be
utilized as highly-parallel smoothers in a multigrid solver, A recent description of a
lattice multigrid algorithm that uses GCR with multiplicative Schwarz preconditioning
as a smoother can be found in Ref. [10].

References

[1] G. Egri et al. Lattice QCD as a video game Comput. Phys. Commun. 177, 631-639
(2007), arXiv:hep-lat/0611022.

[2] M.A. Clark et al. Solving Lattice QCD systems of equations using mized precision
solvers on GPUs. Comput. Phys. Commun. 181, 1517 (2010), arXiv:0911.3191[hep-
lat].

[3] R. Babich et al. Scaling Lattice QCD beyond 100 GPUs. International Conference
of High Performance Computing, Networking, Storage and Analysis (SC) 2011,
arXiv:1109.2935hep-lat].

[4] M.R. Hestenes and E. Stiefel. Methods of Conjugate Gradients for Solving Linear
Systems. Journal of Research of the National Bureau of Standards 49 (6).

[5] J.R.Shewchuck. An introduction to the Conjugate Gradient Method Without the Ag-
onizing Pain. www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.
pdf

[6] G. Sleijpen and H. van der Vorst. Reliable updated residuals in hybrid Bi-CG meth-
ods Computing 56 (2), 141-163 (1996).

[7] H.A. Schwarz. Uber einen Grenzibergang durch alternierendes Verfahren. Viertel-
jahrsschrift der Naturforschenden Gesellschaft in Ziirich 15 (1870) 272-286.

[8] X.-C. Cai and M. Sarkis. A restricted additive Schwarz preconditioner for general
sparse linear systems. SIAM J. Sci. Comput., 21 792-797 (1999).

[9] M. Liischer. Schwarz-preconditioned HMC' algorithm for two-flavour lattice QCD.
Comput.Phys.Commun. 165, 199-220 (2005).

[10] A. Frommer et al. Aggregation based domain decomposition multigrid for the lattice
Wilson Dirac operator. arXiv:1303.1377[hep-lat].

